Substitution occurs with a mixture of retention and inversion at a

Stereochemistry

stereocenter

æ

нö

(R)

'(R)

-H⊕

Step 3

deprotonation

Path A gives inversion (R)

S_N2 Reaction

Substitution occurs with inversion of configuration at chiral centers

Bonds

Formed

C₀-CN

Rate = k [R–Br] $[^{\Theta}CN]$

(doubling the

concentration of

CN doubles the rate)

< 0.001

1

~20

~1000

(R)

H₃C ^{, CN}

.Θ æ :Br + Na

+ NaBi

2 3

Bonds

Broken

C₂-Br

Stereochemistry

Θ ⊕

- C = N Na

S_N1 vs. S_N2 Summary

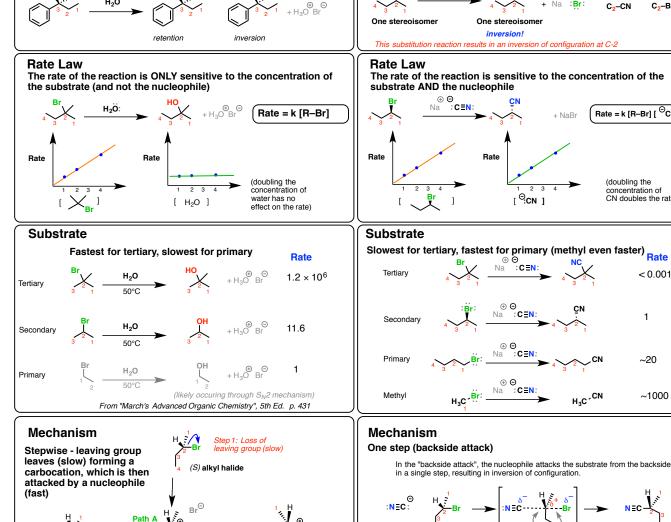
	SN1	SN2
Rate Law	Unimolecular (substrate only) (Bimolecular substrate and nucleophile)
"Big Barrier"	Carbocation stability	Steric hindrance
Alkyl halide (electrophile)	3° > 2° >>1° (fastest)	1° > 2° >>3° (fastest)
Nucleophile	Weak (generally neutral)	Strong (generally bearing a negative charge)
Solvent	Polar protic (e.g. alcohols)	Polar aprotic (e.g. DMSO, acetone)
Stereochemistry	Mix of retention and inversion	Inversion

Comparing S_N1 vs. S_N2 reactions

The key skill to start with is identifying the leaving group Look for halogens (CI, Br, I) or tosylates/mesylates (OTs, OMs) Alternatively, look for alcohols (OH) if acid is present

Once you've identified the leaving group, instpect the carbon it is attached to. How many carbons is that carbon connected to? That will tell you if the carbon is primary, secondary, or tertiary. If there are no attached carbons, that's the special case of "methyl" (S_N2 for sure!)

If the carbon is tertiary, it's likely S_N1. You can rule out S_N2 due to steric hindrance.


If the carbon is primary, it's likely S_N2. You can rule out S_N1 due to the fact that primary carbocations are unstable [one exception: resonance stabilized carbocations].

Next, examine the nucleophile. A negatively charged nucleophile generally indicates an S_N2 reaction. A neutral nucleophile (such as H₂O or ROH) generally indicates an S_N1 reaction.

Finally, check the solvent. A polar aprotic solvent (such as DMSO, acetone, acetonitrile, or DMF) generally indicates S_N2, whereas a polar protic solvent such as H₂O or ROH generally indicates S_N1 conditions.

If you found this useful, click here to check out more great organic chemistry "cheat sheets" !

This sheet Copyright 2015 MasterOrganicChemistry.com Questions, comments? james@masterorganicchemistry.com

(S)

Path B gives retention (S)

-H⊕

Step 3

deprotonation

Path B

Carbocation

Step 2: Attack of nucleophile

on carbocation (fast) Can occur from either side of

the flat carbocation (Path A or Path B)

:ÖН₂

N=C nartial bonds! (S) Transition state · Explains bimolecular rate law (depends on conc. of nucleophile and substrate)

· Explains inversion of stereochemistry Explains sensitivity to steric hindrance (bulky groups slow down backside attack)

This is called the S_N2 mechanism (Substitution, Nucleophilic, bimolecular)