Stereochemistry Exam Preparation Pack Problem Set - Advanced

Section A: Find Chiral Centers and Determine R/S

Find the chiral centers in each of these molecules with "alternative uses" and determine *R/S* for each chiral center.

Link to answer

Section B: Convert to Fischer Projection

For each of the three molecules below:

- Label each chiral center as R/S
- Convert the drawing into a Fischer projection
- Draw the other stereoisomers as Fischer projections
- Indicate which of these stereoisomers is the enantiomer

1

• Indicate which stereoisomer(s) are diastereomers

http://bit.ly/Stereochem-AD-MOC-2

http://bit.ly/Stereochem-AD-MOC-3

2,3-Dibromosuccinic acid

B-1

2,3-Dichlorobutane

3-Chlorobutan-2-ol

http://bit.ly/Stereochem-AD-MOC-4

Section C: Chiral or Achiral Molecules?

C-1 Chiral or achiral molecules? If meso, indicate

2

http://bit.ly/Stereochem-AD-MOC-5

C-2 Chiral or achiral molecules? If meso, indicate

http://bit.ly/Stereochem-AD-MOC-6

$$CH_3$$

C-3 Chiral or achiral molecules? Indicate if meso

http://bit.ly/Stereochem-AD-MOC-7

C-4 Chiral or achiral molecules? Indicate meso (if present)

http://bit.ly/Stereochem-AD-MOC-8

$$H_3C$$
 $=C$
 $COOH$

D-1 Draw the enantiomer (+ more) http://bit.ly/Stereochem-AD-MOC-9

In the sequel to HBO's series "Breaking Bad" entitled "Breaking Better", a rogue high school chemistry teacher clandestinely synthesizes life-saving pharmaceuticals and sells them on the black market.

This is the structure of Zocor, a cholesterol-lowering agent that Merck has sold \$24 billion worth over its patent lifetime.

You are a production assistant for the pilot episode. Your mission is to:

- 1) identify all chiral centers in Zocor
- 2) Draw the enantiomer
- 3) How many stereoisomers are possible for Zocor?

E-1 Enantiomers, Diastereomers, Constitutional Isomers, or the Same? http://bit.ly/Stereochem-AD-MOC-10

For each pair: Are these molecules enantiomers, diastereomers, the same, or constitutional isomers? Would an equal mixture of these two compounds rotate plane-polarized light?

E-2 Enantiomers, Diastereomers, Constitutional Isomers, or the Same? http://bit.ly/Stereochem-AD-MOC-11

E-3 Enantiomers, Diastereomers, Constitutional Isomers, or http://bit.ly/Stereochem-AD-MOC-12

E-4 Enantiomers, Diastereomers, Constitutional Isomers, or the Same?

http://bit.ly/Stereochem-AD-MOC-13

E-5 How are these three molecules (A, B, and C) related to each other? http://bit.ly/Stereochem-AD-MOC-14

Section F: Given the name, draw the structure

- a) Draw (2S,3R)-2,3-Difluorohexane using wedge/dash
- b) Draw the diastereomers

http://bit.ly/Stereochem-AD-MOC-15

Section G, H, I: Cycloalkanes

http://bit.ly/Stereochem-AD-MOC-16

- **G-1** a) Draw the two *achiral* forms of 1,3,5-Trimethylcyclohexane
 - b) Which is more stable?

H-1

http://bit.ly/Stereochem-AD-MOC-17

- a) Draw the most stable **achiral** isomer of a cyclohexane with a single fluoro and a single bromo substituent on the ring
- b) Draw the most stable **chiral** isomer of a cyclohexane with a single fluoro and a single bromo substituent on the ring

- a) Draw one version of 1,3-Dimethylcyclohexane that is chiral, and one that is achiral
 http://bit.ly/Stereochem-AD-MOC-18
 - b) One of these isomers has two conformers of very different energy.

 Draw those two chair conformations.

J-1 Draw The Enantiomer (+ more)

http://bit.ly/Stereochem-AD-MOC-19

This is the molecule Escitalopram (Celexa), an antidepressant.

•Mark the stereocenter(s) and label R/S

- Draw the enantiomer and label R/S
- Pure S enantiomer shows a specific rotation of +120°. Sven, a worker in the quality control unit, observed a specific rotation of -30° for a test sample. What is the percentage of (R) and the percentage of (S) in that sample?

K-1 Optical Activity

http://bit.ly/Stereochem-AD-MOC-20

An 80:20 mixture of the (R,R) and (S,S) enantiomers of 2,3-dibromobutane has an optical rotation of -30° .

Using these templates, show the stereochemical representation of these compounds, their stereoisomers, and their optical rotations:

$$[\alpha]$$
:

$$[\alpha]$$
:

$$[\alpha]$$
:

$$[\alpha]$$
:

L-1 Resolution

http://bit.ly/Stereochem-AD-MOC-21

Draw the two products of the following reaction, clearly showing stereochemistry (it's OK to use "R₃N" for (+)-brucine). Note that (+/–) implies a 1:1 mixture of enantiomers.

Racemic mixture of mandelic acid: reaction with (+)-Brucine

(+)-mandelic acid (-)-mandelic acid

- How are these products related to each other?
- How might you exploit this to resolve mandelic acid into its enantiomers? Describe this process (briefly! no more than 4 sentences)

http://bit.ly/Stereochem-AD-MOC-22

M-1 Chiral Nitrogens

Although the nitrogen in the molecule **A** below has four different substituents, the nitrogen does not give rise to a pair of enantiomers. Why not?

Would you expect the nitrogen in molecule **B** to be a chiral center? Why or why not?