Organic Chemistry: First Semester Road Map (Part 1)

Structure and Bonding	Organic Compounds: Alkanes	Cycloalkanes	Stereochemistry	Radical Reactions	Polar bonds, Formal Charge, and Resonance
Key Concepts Coulomb's law the nucleus Electronic configuration of atoms the octet rule the shapes of s and p orbitals Lewis structures covalent versus ionic bonding VSEPR theory hybrid orbitals sigma and pi bonds sigma bonding condensed formula Line diagrams Molecular orbitals	Key Concepts Functional groups Alkane nomenclature condensed formula Line diagrams Intermolecular forces of alkanes Boiling points of alkanes Constitutional isomers Conformations Newman projections Torsional strain	Key Concepts Ring strain Cis-trans isomerism Dash-wedge notation Index of unsaturation Conformations of cycloalkanes Boat / Chair forms Diaxial steric interactions	Key Concepts Chiral and achiral molecules Stereocenters Stereoisomers Diastereomers Optical rotation R/S notation Meso compounds Plane of symmetry Fischer projection	Key Concepts Free radicals Bond dissociation energies Stability of free radicals Homolytic cleavage Steps of a radical reaction Curved arrows for radical reactions Relative reactivity of different types of C-H bonds (methyl, primary, secondary, tertiary) Activation energy Reaction coordinate Prochirality The Hammond postulate	Key Concepts Electronegativity Polarizability Dipole moment Formal charge Polar covalent bonding Dipoles Hydrogen bonding Ionic bonds Dipole-dipole interactions London forces (dispersion) Boiling and melting points Resonance structure Resonance structure Resonance hybrid Curved arrows Factors that stabilize negative charge Factors that stabilize positive charge
Key Terms Structural formula, anion, cation ion, ionic bond, lone pairs, molecular orbital, node, valence electrons, sigma bond, pi bond, bonding orbital, antibonding orbital, orbital overlap, empirical formula, condensed formula, substituent,	Key Terms Newman projection Eclipsed, staggered, gauche, sawhorse projection, torsional strain, steric hindrance, conformation, constitutional isomer, anti, syn,	Key Terms chair, boat, axial, equatorial, ring strain, cis, trans, dash, wedge, stereoisomers, torsional strain, twist-boat, bicycle, bridgehead, ring flip,	Key Terms Racemic mixture, enantiomer, diastereomer, dextrorolatory, levorotatory optical rotation, specific rotation, absolute configuration, meso compound, plane of symmetry, stereoselective, resolution, achiral, optically active,	Key Terms radical, initiation, propagation, termination, activation energy, reaction coordinate, bond dissociation energy, prochiral, Hammond postulate, bond dissociation energy, homolytic cleavage, heterolytic cleavage	Key Terms Resonance, resonance hybrid, formal charge, anion, cation, polar covalent bond, carbocation, carbanion, curved arrows, dipoles, delocalization, ionic bond, dipole- dipole interaction, London (dispersion) forces, intermolecular forces, dipole moment, hydrogen bond
Key Skills	Key Skills	Key Skills	Key Skills	Key Skills	Key Skills
Draw the shapes of s and p orbitals Predict molecular geometry using VSEPR theory Draw Lewis structure for a given molecule Interconvert a molecule between a Lewis structure, structural formula, and line diagram Identify "hidden" hydrogens and lone pairs from a line diagram Draw sigma bonds for a simple molecule (like methane) Draw pi bonds for a simple molecule (like ethene) Identify hybridization state of each atom Draw the molecular orbital diagram for ethene	Identify functional groups two ways: 1) be able to name when shown structure, and 2) be able to draw structure when given name Interpret condensed formulas Interpret line diagrams Identify primary, secondary, tertiary, and quaternary carbons Given an alkane structure, determine the name Given the name of an alkane, draw the structure Rank alkanes according to boiling points Given a molecular formula, draw all possible isomers Identify molecules that are identical but drawn in different conformations. Perform a bond rotation on a line diagram Convert a line diagram to a Newman projection Evaluate the relative energies of different Newman projections Graph energies of different Newman	Identify molecules with ring strain Draw a cyclohexane chair conformation (both directions) Identify the lowest-energy chair conformation of a cyclohexane ring Convert a flat cyclohexane drawing to a chair cyclohexane drawing Demonstrate a "ring flip" Identify cis-trans relationships on a flat ring or in a cyclohexane chair Calculate the energies of different chair forms. Given different energies of chair forms, calculate the equilibrium constant using K = $e^{-AG/RT}$ Understand why large groups "prefer" the equatorial position of cyclohexane chair Name bicyclic alkanes	Understand how physical properties differ between types of isomers Identify stereocenters on a molecule Assign R/S to stereocenters Given a chiral molecule, draw the enantiomer Identify a meso compound Understand the relationship between the number of stereocenters and the number of potential stereoisomers Determine if two molecules are enantiomers, diastereomers, or the same Determine R/S on a molecule drawn as a Newman projection Determine R/S on a molecule drawn as a Fischer projection Given observed rotation and concentratior calculate specific rotation Make a flowchart for the separation of a racemic mixture of enantiomers	Understand the factors that affect stability of free radicals Understand the relative reactivity of different C–H bonds Understand the relative reactivity of different halogens (F ₂ , Cl ₂ , Br ₂ , I ₂) Identify each of the three steps of a free radical reaction Draw a mechanism for a typical free radical reaction (e.g. chlorination) Given an alkane, identify how many products would result from a chlorination reaction Understand why radical reactions are not stereoselective Calculate the relative reactivities of different types of C–H bonds in alkane halogenation, adjusting for statistical considerations	Apply electronegativity to determine dipoles Determine whether a molecule has a dipole moment Calculate formal charge of an atom Know the <i>difference</i> between formal charge and electron density Given the formal charge of an atom, draw full Lewis structure Understand how the four intermolecular forces affect boiling points Draw the resonance forms of a given molecule Draw curved arrows to interconvert resonance forms Evaluate the stability of different resonance forms

Organic Chemistry: First Semester Road Map (Page 2)

Alkenes and								
Acid-Base Reactions	Substitution Reactions	Elimination Reactions	Addition Reactions	Spectroscopy	Alkynes			
Key Concepts	Key Concepts Nucleophilic substitution reactions	Key Concepts	Key Concepts	Key Concepts	Key Concepts			
Definition of Lewis / Bronsted acidity Acid-base equilibria Conjugate acids and bases Factors that affect acidity: •Charge •Electronegativity •Polarizability •Resonance •Inductive effects •Orbitals (sp, sp ² , sp ³) pKa Curved arrows (for reactions)	Nucleophilicity Electrophilicity Leaving groups Carbocation stability Steric hindrance Rate laws Stereochemical inversion Difference between nucleophilicity and basicity The SN1 reaction The SN2 reaction Reaction coordinate diagrams Carbocation rearrangements (hydride and alkyl shifts)	Degree of unsaturation π bonding Nomenclature of alkenes <i>E</i> and <i>Z</i> nomenclature for alkenes Factors affecting alkene stability Elimination reactions Zaitsev's rule Relationship between elimination and heat The E1 reaction The E2 reaction Bulky bases	Addition reactions Carbocations Markovnikoff's rule Addition reactions (>10) Stereochemistry of addition reactions Regiochemistry of addition reactions Carbocation rearrangements Oxidative cleavage	Infrared spectroscopy Functional groups Index of unsaturation Vibration Wavenumber NMR spectroscopy Chemical shift Coupling constant Integration Chemical environment	Bonding in alkynes Nomenclature of alkynes Acidity of alkynes Addition reactions Substitution reactions Alkyne synthesis through elimination Stereochemistry of addition reactions			
Key Terms	Key Terms	Key Terms	Key Terms	Key Terms	Key Terms			
Lewis acid, Lewis base, Bronsted acid, Bronsted base, acid dissociation constant, pKa, conjugate acid, conjugate base, protonation	solvation, solvolysis, polar protic solvent, polar aprotic solvent, transition state, reaction coordinate, intermediate, backside attack, inversion, concerted reaction, hydride shift, alkyl shift	elimination, regioselectivity, stereoselectivity, base, <i>anti</i> , syn, cis, trans, <i>Z</i> , <i>E</i> , degree of unsaturation, bulky base, dehydration, catalyst	Regioselectivity, stereoselectivity, addition, syn, anti, concerted mechanism, oxidative cleavage, Markovnikoff's rule, halonium ion,	Bond stretch; infrared spectroscopy; J coupling; chemical shift; coupling constant; integration; multiplicity	Terminal alkyne, internal alkyne, tautomerization, enol, syn, anti, sp hybridization			
Reactions	reaction, hydride shift, alkyl shift Reactions	Reactions	Reactions		Reactions			
Acid base reactions	SN1, SN2, hydride shift, alkyl shift	E1, E2, hydride shift, alkyl shift	Addition of hydrogen halides; hydration;		Deprotonation; S _N 2 with alkyl halides;			
Key Skills Identify acids and bases Given an acid, draw the conjugate base Given a base, draw the conjugate acid Understand the relationship between acidity and the stability of the conjugate	Key Skills Identify a substitution reaction Understand the factors affecting nucleophilicity: •Charge •Electronegativity •Polarizability	Key Skills Given an alkene structure, provide the name Given an alkene name, draw the structure Apply the E / Z convention to name substituted alkenes	halogenation; halohydrin formation; oxymercuration; hydroboration; hydrogenation; epoxidation; dihydroxylation; cyclopropanation; ozonolysis (reductive and oxidative workup); oxidative cleavage w/ KMnO ₄ radical addition of HBr	Key Skills Given molecular formula, calculate index of unsaturation Identify an OH group on an IR spectrum Identify a C=O group on an IR	partial hydrogenation (Lindlar, Na/NH ₃); hydroboration; oxymercuration; hydration; halogenation; addition of halogen halides; hydrogenation; formation of alkynes via elimination of dihalides Key Skills			
base	•Solvent •Steric bulk	Rank alkenes in order of stability	Key Skills	spectrum	Given an alkene structure, provide the name			
Draw a curved-arrow mechanism for an acid-base reaction Rank molecules according to acid strength Understand the relationship between	What makes a good leaving group? Rank leaving group ability Draw the mechanism of an S _N 1 reaction Understand relationship between S _N 1 and carbocation stability	Given a molecular formula, calculate degree of unsaturation Given starting material and base, draw elimination product (apply Zaitsev's rule)	Given starting alkene, be able to draw products of various addition reactions (below) with proper regiochemistry and stereochemistry Draw mechanisms for each addition	Use IR to determine presence or absence of alcohols, ketones, aldehydes, esters, carboxylic acids and ethers Identify positions of various functional groups in NMR spectrum	Given an alkene name, draw the structure Make a drawing showing how p orbitals form the π bonds in an alkyne			
Understand how to use a pKa table to understand whether a reaction will occur	Draw mechanism of an $S_N 2$ reaction Understand relationship between steric hindrance and the $S_N 2$ reaction Compare and contrast the stereochemistry	Draw mechanisms for E1 and E2 reactions Understand how carbocation stability affects the rate of the E1 reaction	reaction, where appropriate Draw reaction coordinate for an addition reaction involving a carbocation	Given NMR spectrum, determine if it is consistent with structure Understand relationship between chemical shift and electronegativity	Given starting alkyne, be able to draw products of various addition reactions, with proper regiochemistry and stereochemistry.			
	of the S_N^1 and S_N^2 reactions	Understand how acid can promote the	Determine the product of an oxidative	Understand integration	Draw example of alkyne acid-base reaction			
	Draw reaction coordinates for S_N1 and S_N2 reactions	Understand the stereochemistry of	cleavage reaction on an alkene	Understand splitting (n+1 rule)	Draw examples of alkynyl anions (acetylides) in various SN2 reactions			
	Understand when rearrangement can occur with S_N 1	Apply the E2 reaction on a cyclohexane	reaction will produce enantiomers, diastereomers, or a single product	Given spectrum and molecular formula, determine structure of molecule	Employ partial reduction techniques such as Lindlar/H $_{\rm 2}$ and Na/NH $_{\rm 3}$			
	Draw examples of S _N 1 reactions with hydride shifts and alkyl shifts	Show an E2 reaction occurring on a molecule drawn as a Newman projection	Given addition product and reactants, be able to identify starting alkene	Given molecule, identify number of NMR signals that will be seen	Methods for alkyne synthesis			
	Understand the factors affecting substitution in cyclohexane rings	Understand when rearrangement reactions can occur with E1	Understand why Markovnikov's rule	Understand relationship between symmetry and peaks seen in NMR spectrum	Draw mechanisms for each addition reaction, where appropriate			
	Given a substitution product provide a method for its synthesis	hydride shifts and alkyl shifts Identify a bulky base, and understand	Understand why hydroboration proceeds with anti-Markovnikoff selectivity		Given products of addition reactions, draw the starting material			
	Given reaction conditions, predict whether a reaction will proceed through S_N 1 or S_N 2	how it affects the products of elimination reactions	Given products of addition reactions, draw the starting material					
	Draw an example of an intramolecular substitution reaction	Given an elimination product, draw the starting material	2					

Given reaction conditions, predict whether an SN1/SN2/E1/E2 reaction will occur