

Reaction Map: Reactions of Alkanes, Alkyl Halides, Alkenes, and Alkynes

Reaction	Name	Typical Conditions	Notes [1°, 2° and 3° refers to primary, secondary, tertiary]	Reactio	on Name	Typical Conditions	Notes [1°, 2° and 3° refers to primary, secondary, tertiary]
1	Free radical chlorination	Cl ₂ , hγ	Not highly selective	29	Ozonolysis (reductive workup)	O ₃ , then Zn/H⁺ or (CH₀)₂S	cleaves C=C to give two carbonyls. Alkenyl C-H bonds remain
2	Free radical bromination	Br₂, hγ	Highly selective for tertiary C-H	(30)	Ozonolysis (oxidative	O ₂ , then H ₂ O ₂	cleaves C=C to give two carbonyls. Alkenyl
(3)	Elimination [E2]	⊖ RO /ROH	Best for 2° and 3°, anti stereochemistry	\bigcirc	workup)	-3,	C-H bonds oxidized to C-OH
<u>(</u> 4)	Elimination [E1]	polar solvent,	Competes with S _N 1	(31)	Oxidative cleavage with KMnO ₄	KMnO ₄ , acid, heat	cleaves C=C to give two carbonyls. Alkenyl C-H bonds oxidized to C–OH
(5)	Alcohol Formation [S _N 2]	[⊖] он / н₂о	Best for 1° alkyl halides; 2° can compete w/ E2	(32)	Cyclopropanation (Simmons- Smith)	$\text{Cu/Zn}, \text{CH}_2\text{I}_2$	syn-selective
	Alcohol Formation [S.,1]	HaQ	Best for 3° alkyl halides: rearr possible w/ 2°	(33)	Dichlorocyclopropanation	CHCI ₃ , KOH	syn-selective
\odot	"Solvolysis"	Θ		34	Acid-catalyzed ether formation	H ₂ SO ₄ , ROH	Markovnikov selective, rearr. possible
$\left(\begin{array}{c} \tau \end{array} \right)$	Ether Formation [S _N 2] ["Williamson Ether Synthesis"	RO /ROH "]	Best for 1° alkyl halides; 2° can compete w/ E2	35	Oxymercuration	Hg(OAc)₂, ROH, then NaBH₄	Markovnikov selective, alcohol is solvent
(8)	Ether Formation [S _N 1] "Solvolysis"	ROH	Best for 3° alkyl halides; rearr possible w/ 2°	36	Oxymercuration	Hg(OAc) ₂ , H ₂ O, then NaBH ₄	Markovnikov selective, water is solvent
9	Thiol formation [S _N 2]	^Ө ѕн	$S_N 2$; best for 1° alkyl halides, 2° OK	37	Hydroboration	BH ₃ , then NaOH, H ₂ O ₂	anti-Markovnikov selective, syn-selective
10	Sulfide formation [S _N 2]	[⊖] SR	$S_N 2$; best for 1° alkyl halides, 2° OK	38	Acid-catalyzed hydration	H ₂ SO ₄ , H ₂ O ("H ₃ O ⁺ ")	Markovnikov selective; rearr possible
11	Ester formation [S _N 2]	RCO ₂	S_N^2 ; best for 1° alkyl halides, 2° OK	39	Partial hydrogenation (Lindlar)	Lindlar, H ₂	syn-selective
12	Azide formation [S _N 2]	N ₃ ^O	$S_{N}^{}2;$ best for 1° alkyl halides, 2° OK	40	Partial hydrogenation (sodium reduction)	Na/NH ₃	anti-selective
13	Nitrile formation [S _N 2]	⊖ CN	$S_{N}^{}2;$ best for 1° alkyl halides, 2° OK	41	Alkyne hydroboration	BH_3 , then NaOH, H_2O_2	anti-Markovnikov selective; tautomerization
14	Alkyne formation [S _N 2] F	a−c≡c [⊖]	Best for 1° alkyl halides; 2° can compete w/ E2	(42)	Alkyne Oxymercuration	HgSO ₄ , H ₂ O, H ₂ SO ₄	Markovnikov selective; tautomerization
15	Addition of H-CI To Alkenes	H–CI	Markovnikov-selective; rearr. possible	43	Alkyne Ozonolysis	O ₃	Carboxylic acids formed; terminal alkynes give CO_2
16	Addition of H-Br To Alkenes	H–Br	Markovnikov-selective; rearr. possible	(44)	Alkyne Ox. Cleavage [KMnO _{4]}	KMnO₄, H⁺	same as ozonolysis
17	Addition of H-I To Alkenes	H-I	Markovnikov-selective; rearr. possible	(45)	Hydrogenation	Pd/C, H ₂	Adds twice to alkynes
18	Radical addition of H–Br to alkenes	HBr, hy	anti-Markovnikov-selective; radical process	46	Alkyne double halogenation	Cl ₂ , Br ₂ , or l ₂ (2 equiv)	Each individual reaction is anti-selective
(19)	Hydrogenation of alkenes	Pd/C, H ₂	syn-selective	47	Halogenation	Cl ₂ , Br ₂ , or l ₂ (1 equiv)	anti-selective
20	Alkene chlorination	Cl_2, CCl_4	anti- selective	48	Addition of H–Cl to Alkynes	H–CI	Markovnikov selective
21	Alkene bromination	Br ₂ , CCI ₄	anti- selective	49	Addition of H–Br to Alkynes	H–Br	Markovnikov selective
22	Alkene iodination	I ₂ , CCI ₄	anti- selective	50	Addition of H–I to Alkynes	H-I	Markovnikov selective
23	Chlorohydrin formation	Cl ₂ , H ₂ O or NCS	anti- selective; Markovnikov selective, water is solvent. Alcohol solvent gives ether	51	Addition of H–X to haloalkenes	H–CI, H–Br, or H–I	Markovnikov selective
(24)	Bromohydrin formation	Br ₂ , H ₂ O or NBS	anti- selective; Markovnikov selective, water is solvent. Alcohol solvent gives ether	(52)	Double addition of H–CI to	H–CI [2 equiv]	Adds twice to alkyne; Markovnikov selective
(25)	lodohydrin formation	CI ₂ , H ₂ O or NIS	anti- selective; Markovnikov selective, water is solvent. Alcohol solvent gives ether	(53)	Double addition of H–Br to	H–Br [2 equiv]	Adds twice to alkyne; Markovnikov selective
(26)	Epoxidation of alkenes	RCO ₃ H (e.q. <i>m</i> -CPBA)	anti- selective; Markovnikov selective, water is solvent. Alcohol solvent gives ether	\bigcirc	Alkynes		Adds Ander to Human M. 1. 1. 1. 1.
27	Dihydroxylation of alkenes with OsO ₄	OsO ₄ , KHSO ₃	syn- selective. KHSO ₃ helps remove Os	<u>54</u>	Jouble addition of H–I to Alkynes	n-i (z edniv)	Auus IWICE TO AIKYNE; MARKOVNIKOV SEIECTIVE
28	Dihydroxylation of alkenes (cold KMnO ₄)	KMnO ₄ , NaOH (cold, dilute)	syn- selective. Important to keep cold, otherwise oxidative cleavage occurs (see 31)	(55)	Elimination of dihalides to give alkynes	NaNH ₂ [2 equiv]	vicinal or geminal dihalides; for terminal alkynes, 3 equiv NaNH ₂ required