


Reaction Map: Reactions of Alkanes, Alkyl Halides, Alkenes, Alkynes and Alcohols

Reaction	Name	Typical Conditions	Notes [1°, 2° and 3° refers to primary, secondary, tertiary]
1	Free radical chlorination	Cl ₂ , hγ	Not highly selective
2	Free radical bromination	Br₂, h γ	Highly selective for tertiary C–H
3	Elimination [E2]	© RO /ROH	Best for 2° and 3°, anti stereochemistry
4	Elimination [E1]	polar solvent, heat	Competes with S _N 1
5	Alcohol Formation [S _N 2]	$^{\Theta}$ OH /H ₂ O	Best for 1° alkyl halides; 2° can compete w/ E2
6	Alcohol Formation [S _N 1] "Solvolysis"	H ₂ O	Best for 3° alkyl halides; rearr possible w/ 2°
7	Ether Formation [S _N 2] ["Williamson Ether Synthesis	⊖ RO /ROH s"]	Best for 1° alkyl halides; 2° can compete w/ E2
8	Ether Formation [S _N 1] "Solvolysis"	ROH	Best for 3° alkyl halides; rearr possible w/ 2°
9		⊖ѕн	S _N 2; best for 1° alkyl halides, 2° OK
	Sulfide formation [S _N 2]	[⊖] sr	S _N 2; best for 1° alkyl halides, 2° OK
	Ester formation [S _N 2]	RCO ₂ in polar aprotic	S _N 2; best for 1° alkyl halides, 2° OK
	Azide formation [S _N 2]	N ₃ ^O solvent	S_N^2 ; best for 1° alkyl halides, 2° OK
13		[⊖] CN	S_N^2 ; best for 1° alkyl halides, 2° OK
14	Alkyne formation [S _N 2] R	-c≡c⊖	Best for 1° alkyl halides; 2° can compete w/ E2
15	Addition of H-CI To Alkenes	H–CI	Markovnikov-selective; rearr. possible
16	Addition of H-Br To Alkenes	H–Br	Markovnikov-selective; rearr. possible
17	Addition of H-I To Alkenes	H–I	Markovnikov-selective; rearr. possible
	Radical addition of H–Br to alkenes	HBr, hγ	anti-Markovnikov-selective; radical process
19	Hydrogenation of alkenes	Pd/C, H ₂	<i>syn</i> - selective
20	Alkene chlorination	Cl ₂ , CCl ₄	anti- selective
21	Alkene bromination	Br ₂ , CCl ₄	anti- selective
22	Alkene iodination	I ₂ , CCI ₄	anti- selective
23	Chlorohydrin formation	Cl ₂ , H ₂ O or NCS	<i>anti</i> - selective; Markovnikov selective, water is solvent. Alcohol solvent gives ether
24	Bromohydrin formation	Br ₂ , H ₂ O or NBS	<i>anti</i> - selective; Markovnikov selective, water is solvent. Alcohol solvent gives ether
	lodohydrin formation	CI ₂ , H ₂ O or NIS	<i>anti</i> - selective; Markovnikov selective, water is solvent. Alcohol solvent gives ether
26	Epoxidation of alkenes	RCO₃H (e.g. <i>m</i> -CPBA)	<i>anti</i> - selective; Markovnikov selective, water is solvent. Alcohol solvent gives ether
27	Dihydroxylation of alkenes with OsO ₄	OsO₄ , KHSO ₃ (e.g. <i>m</i> -CPBA)	<i>syn-</i> selective. KHSO ₃ helps remove Os
28	Dihydroxylation of alkenes (cold KMnO ₄)	KMnO ₄ , NaOH (cold, dilute)	<i>syn</i> - selective. Important to keep cold, otherwise oxidative cleavage occurs (see 31)
29	Ozonolysis (reductive workup)	O ₃ , then Zn/H+ or (CH ₃) ₂ S	cleaves C=C to give two carbonyls. Alkenyl C-H bonds remain
30	Ozonolysis (oxidative workup)	O_3 , then H_2O_2	cleaves C=C to give two carbonyls. Alkenyl C-H bonds oxidized to C–OH

1)	Oxidative cleavage with KMnO ₄	KMnO ₄ , acid, heat	cleaves C=C to give two carbonyls. Alkenyl C-H bonds oxidized to C–OH
2) 3)	Cyclopropanation (Simmons- Smith)	$Cu/Zn, CH_2I_2$	syn-selective
3	Dichlorocyclopropanation	CHCI ₃ , KOH	<i>syn</i> -selective
4	Acid-catalyzed ether formation	H ₂ SO ₄ , ROH	Markovnikov selective, rearr. possible
5)	Oxymercuration	Hg(OAc) ₂ , ROH, then NaBH ₄	Markovnikov selective, alcohol is solvent
6	Oxymercuration	Hg(OAc) ₂ , H ₂ O, then NaBH ₄	Markovnikov selective, water is solvent
7	Hydroboration	BH_3 , then NaOH, H_2O_2	anti-Markovnikov selective, syn-selective
8	Acid-catalyzed hydration	H ₂ SO ₄ , H ₂ O ("H ₃ O+")	Markovnikov selective; rearr possible
9	Partial hydrogenation (Lindlar)	Lindlar, H ₂	syn-selective
0	Partial hydrogenation (sodium reduction)	Na/NH ₃	anti-selective
1	Alkyne hydroboration	BH ₃ , then NaOH, H ₂ O ₂	anti-Markovnikov selective; tautomerization
2	Alkyne Oxymercuration	HgSO ₄ , H ₂ O, H ₂ SO ₄	Markovnikov selective; tautomerization
.3	Alkyne Ozonolysis	0 ₃	Carboxylic acids formed; terminal alkynes give CO ₂
4	Alkyne Ox. Cleavage [KMnO _{4]}	KMnO ₄ , H+	same as ozonolysis
.5	Hydrogenation	Pd/C, H ₂	Adds twice to alkynes
6	Alkyne double halogenation	Cl ₂ , Br ₂ , or l ₂ (2 equiv)	Each individual reaction is anti-selective
7	Halogenation	Cl ₂ , Br ₂ , or l ₂ (1 equiv)	anti-selective
8	Addition of H–Cl to Alkynes	H–CI	Markovnikov selective
9	Addition of H–Br to Alkynes	H–Br	Markovnikov selective
0	Addition of H–I to Alkynes	H-I	Markovnikov selective
	Addition of H–X to haloalkenes	H–Cl, H–Br, or H–I	Markovnikov selective
2	Double addition of H–CI to Alkynes	H–Cl [2 equiv]	Adds twice to alkyne; Markovnikov selective
3	Double addition of H–Br to Alkynes	H–Br [2 equiv]	Adds twice to alkyne; Markovnikov selective
4	Double addition of H–I to Alkynes	H–I [2 equiv]	Adds twice to alkyne; Markovnikov selective
5	Elimination of dihalides to give alkynes	NaNH ₂ [2 equiv]	vicinal or geminal dihalides; for terminal alkynes, 3 equiv NaNH ₂ required

56	Formation of epoxides from halohydrins
57	Opening of epoxides with aqueous acid
58	Elimination of alcohols to form alkenes (acidic)
59	POCI ₃ elimination of alcohols to alkenes
60	Acidic cleavage of ethers
61	Conversion of alcohols to alkyl halides with PBr ₃
62	SOCI ₂ conversion of alcohols to alkyl chlorides
63	Alcohols to alkyl halides with HX
64	Tosylate and mesylate formation
65	Disulfide formation
66	Alcohol oxidation with PCC
67	Alcohol oxidation with H ₂ CrO ₄
68	Dess Martin oxidation
69	Basic ring opening of epoxides

NaH (strong base)	Internal S _N 2 reaction: inversion of configuration at carbon
H ₃ O ⁺ (or H ₂ O/H ₂ SO ₄)	Protonation of epoxide, then attack of H_2O at most substituted carbon
H_2SO_4 , heat	Follows Zaitsev's rule (most sub. alkene formed). Rearrangements can occur
POCI ₃ , pyridine	E2 reaction
HI, heat	Can proceed through S_N^2 or S_N^1 depending on type of alcohol
PBr ₃	S _N 2 reaction. PCI ₃ can also be used to make alkyl chlorides
SOCI2	Usually taught as S _N 2. Pyridine can be used as base.
HCI, HBr, HI	Can go through S _N 1 or S _N 2 depending on type of alcohol
TsCI or MsCI	Does not affect stereochemistry. Can use a base such as pyridine.
l ₂ (oxidant)	Can use other oxidants but I ₂ is most common
PCC	1° alcohols to aldehydes; 2° alcohols to ketones
K ₂ Cr ₂ O ₇ + acid	1° alcohols to carboxylic acids, 2° alcohols to ketones.
Dess Martin Periodinane	1° alcohols to aldehydes; 2° alcohols to ketones
Grignards, ⁻OH, LiAlH₄	Add to least substituted position of epoxides