

Path A gives inversion (R)

S_N2 Reaction

S_N1 vs. S_N2 Summary

Path B gives retention (S)

	SN1	SN2
Rate Law	Unimolecular (substrate only)	Bimolecular (substrate and nucleophile)
"Big Barrier"	Carbocation stability	Steric hindrance
Alkyl halide (electrophile)	3° > 2° >>1° (fastest)	1° > 2° >>3° (fastest)
Nucleophile	Weak (generally neutral)	Strong (generally bearing a negative charge)
Solvent	Polar protic (e.g. alcohols)	Polar aprotic (e.g. DMSO, acetone)
Stereochemistry	Mix of retention and inversion	n Inversion

Comparing S_N1 vs. S_N2 reactions

The key skill to start with is **identifying the leaving group** Look for halogens (CI, Br, I) or tosylates/mesylates (OTs, OMs) Alternatively, look for alcohols (OH) if **acid** is present

Once you've identified the leaving group, instpect the **carbon** it is attached to. How many carbons is that carbon connected to? That will tell you if the carbon is primary, secondary, or tertiary. If there are no attached carbons, that's the special case of "methyl" ($S_N 2$ for sure!)

If the carbon is tertiary, it's likely S_N1 . You can rule out S_N2 due to steric hindrance. If the carbon is primary, it's likely S_N2 . You can rule out S_N1 due to the fact that primary carbocations are unstable [one exception: resonance stabilized carbocations].

Next, examine the **nucleophile**. A negatively charged nucleophile generally indicates an $S_N 2$ reaction. A neutral nucleophile (such as H_2O or ROH) generally indicates an $S_N 1$ reaction.

Finally, check the **solvent**. A polar aprotic solvent (such as DMSO, acetone, acetonitrile, or DMF) generally indicates S_N2 , whereas a polar protic solvent such as H_2O or ROH generally indicates S_N1 conditions.

If you found this useful, get more great organic chemistry study sheets at http://bit.ly/SN1-SN2

(or scan the code)

This sheet Copyright 2019 MasterOrganicChemistry.com Questions, comments? james@masterorganicchemistry.com