Stereochemistry Exam Preparation Pack 24 Key Problem Types - Beginner / Intermediate

Section A: Assigning relationships

Link to answer

http://bit.ly/Stereochem-El-MOC-1

Decide if these molecules are enantiomers or diastereomers based on the name alone.

- 1) (R)-Butan-2-ol and (S)-Butan-2-ol
- 2) (2R,3R)-2-Bromo-3-chlorobutane and (2S,3S)-2-Bromo-3-chlorobutane
- 3) (R,R)-Tartaric acid and (R,S)-Tartaric acid
- 4) (2R,4R)-2,3,4-Pentanetriol and (2S,4S)-2,3,4-Pentanetriol
- 5) (R,R,R,R,R)-BigComplicatedMoleculicine and (R,R,R,R,S)-BigComplicatedMoleculicine
- 6) (E)-Hex-3-ene and (Z)-Hex-3-ene
- 7) (*R,E*)-4-Hexen-2-ol and (*S,Z*)-4-Hexen-2-ol
- 8) (R,E)-4-Hexen-2-ol and (R,Z)-4-Hexen-2-ol
- 9) (*R,E*)-4-Hexen-2-ol and (*S,E*)-4-Hexen-2-ol
- 10) (1R,2S)-1,2-Dimethylcyclohexane and (1S, 2R)-1,2-Dimethylcyclohexane
- 11) cis-1,2-Dimethylcyclohexane and trans-1,3-Dimethylcyclohexane
- 12) (R,S)-2,3-Dichlorobutane and (S,R)-2,3-Dichlorobutane

Section B: Assigning R/S

B-1 Assign all chiral centers as R or S

http://bit.ly/Stereochem-El-MOC-2

d) CH₃

B-2 Assign all chiral centers as R or S

http://bit.ly/Stereochem-El-MOC-3

d) e) H₃C OH

B-3 Assign R or S to all chiral centers

http://bit.ly/Stereochem-El-MOC-4

B-4 Assign R or S to the indicated chiral center in these Fischer projections

a) O_C-H HO-H HO-H OH CH₂OH

b) CH₂O⊦ H➡—NH CH₃

 $\mathsf{Br} \overset{\mathsf{F}}{\underset{\mathsf{H}}{\longleftarrow}} \mathsf{CH}_3$

http://bit.ly/Stereochem-EI-MOC-5

d) e) $\begin{array}{ccc} \text{COOH} & \text{CH}_2\text{OH} \\ \text{H}_3\text{C} & \text{H} & \text{Br} & \text{H} \\ \text{NH}_2 & \text{CH}_3 \end{array}$

B-5 Assign R or S to the chiral centers in these Sawhorse projections http://bit.ly/Stereochem-El-MOC-6

CI H OH Br H₃C H Br H OH F HOOC H

d) H CH_3 e) H CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

B-6 Assign R or S to the chiral centers in these Newman projections http://bit.ly/Stereochem-El-MOC-7

3

B-7 Assign R or S to the chiral centers in these cyclohexane chairs

http://bit.ly/Stereochem-EI-MOC-8

d) H_3C E CI

b)

b)

C-1 Are these chiral or achiral molecules?

http://bit.ly/Stereochem-EI-MOC-9

H₃C H CH₃C CH₃

C-2 Another set. Chiral or achiral molecules? http://bit.ly/Stereochem-El-MOC-10

a) Br

D-1 Decide if a molecule has chiral centers and if so, how many stereoisomers each has. If there is a meso compound, draw the structure using wedge/dash http://bit.ly/Stereochem-El-MOC-11

c)

E-1 Decide if these molecules are enantiomers, diastereomers, the same, or constitutional isomers [pssst - this is a very common class of exam problem!]

http://bit.ly/Stereochem-El-MOC-12

b)

d)

c)
$$CH_2OH$$
 $H \longrightarrow OH$
 $H_3C \longrightarrow OH$

$$\supset$$

E-2 Enantiomers, diastereomers, the same, or constitutional isomers?

http://bit.ly/Stereochem-El-MOC-13

E-3 Enantiomers, diastereomers, the same, or constitutional isomers?

http://bit.ly/Stereochem-El-MOC-14

E-4 Enantiomers, diastereomers, the same, or constitutional isomers?

http://bit.ly/Stereochem-El-MOC-15

F-1 Convert each of these line drawings ("perspective" drawings) to a Fischer projection. http://bit.ly/Stereochem-El-MOC-16

G-1 Convert each of these Fischer projections to line drawings (use the template below) http://bit.ly/Stereochem-El-MOC-17

$$\begin{array}{c} CH_2OH \\ CI \longrightarrow H \\ Br \longrightarrow H \\ CH_3 \end{array}$$

COOH
$$COOH$$
 CH_2OH $C-H$ CH_3 CH_4 CH_5 CH_5 CH_6 CH_7 CH_8 C

H-1 Convert each of these Newman projections to a Fischer projection.

http://bit.ly/Stereochem-El-MOC-18

I-1 Given these names, draw the following molecules:

• (S)-2-Chlorobutane

- http://bit.ly/Stereochem-El-MOC-19
- (2R,3R)-3-Chloropentan-2-ol
- (1R,2S)-2-Amino-1-phenylpropan-1-ol

J-1 The structure below is one enantiomer of the molecule Fucitol.

Draw the enantiomer of this molecule, which also goes by the name D-Fuc-ol.

http://bit.ly/Stereochem-El-MOC-20

J-2 The structure below goes by the name Thebacon. How many chiral centers does Thebacon have? For bonus points draw the enantiomer using the template on the right.
 http://bit.ly/Stereochem-El-MOC-21

J-3 The molecule below is known as Moronic acid. How many chiral centers does it have? Try drawing the enantiomer using the template on the right. http://bit.ly/Stereochem-El-MOC-22

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

K-1 Optical rotation questions.

http://bit.ly/Stereochem-El-MOC-23

a) If the specific rotation of (+)-Fucitol is $+50^{\circ}$, and the rotation of a sample of Fucitol is measured to be -10° , what is the per-cent composition of (+)-Fucitol and (-)-Fucitol in the sample?

b) A 5.0 mg sample of Thebacon is dissolved in 1.0 mL of methanol and the solution placed in a cell with a 2.0 cm path length. The observed rotation was +0.105°.

What is the $[\alpha]_{D}$ for Thebacon?

L-1 [Assumes you have covered free-radical reactions of alkanes]

How many different monochlorinated isomers (including stereoisomers) are possible for each of these molecules?

http://bit.ly/Stereochem-El-MOC-24

