Stereochemistry Exam Preparation Pack
Answer Key - Advanced

Section A: Find Chiral Centers and Determine R/S
Find the chiral centers in each of these molecules with “alternative uses” and determine R/S for each chiral center.

Section B: Convert to Fischer Projection
For each of the three molecules below:
• Label each chiral center as R/S
• Convert the drawing into a Fischer projection
• Draw the other stereoisomers as Fischer projections
• Indicate which of these stereoisomers is the enantiomer
• Indicate which stereoisomer(s) are diastereomers

Cocaine

LSD

Heroin
B-1 2,3-Dibromosuccinic acid

2,3-Dibromosuccinic acid has no enantiomer (meso!).

Other stereoisomers (both diastereomers):

B-2 2,3-Dichlorobutane

2,3-Dichlorobutane has Fischer projections that show enantiomers and diastereomers (meso!).

B-3 3-Chlorobutan-2-ol

3-Chlorobutan-2-ol has Fischer projections that show diastereomers and enantiomers (meso!).

Section C: Chiral or Achiral Molecules?

C-1 Chiral or achiral molecules? If meso, indicate

achiral meso chiral chiral achiral meso
C-2 Chiral or achiral molecules? If meso, indicate

C-3 Chiral or achiral molecules? Indicate if meso

C-4 Chiral or achiral molecules? Indicate meso (if present)

D-1 **Draw the enantiomer (+ more)**

Your mission is to:
1) identify all chiral centers in Zocor
2) Draw the enantiomer
3) How many stereoisomers are possible for Zocor?

![Zocor](https://www.masterorganicchemistry.com)

enantiomer

2^7 stereoisomers possible

E-1 **Enantiomers, Diastereomers, Constitutional Isomers, or the Same?**

For each pair: Are these molecules enantiomers, diastereomers, the same, or constitutional isomers? Would an equal mixture of these two compounds rotate plane-polarized light?

![Molecules](https://www.masterorganicchemistry.com)

*a) same
b) yes*
*a) enantiomers
b) no*

Stereochemistry Answer
Key - Advanced
https://www.masterorganicchemistry.com
E-2 Enantiomers, Diastereomers, Constitutional Isomers, or the Same?

- Me
 - O
 - H
 - a) same
 - b) no

- HO
 - D
 - a) diastereomers
 - b) yes

- O
 - C
 - H
 - H
 - C
 - CH₃
 - CH₂OH
 - a) same
 - b) yes

E-3 Enantiomers, Diastereomers, Constitutional Isomers, or the Same?

- HO
 - H
 - CH₃
 - H
 - CH₃
 - a) same
 - b) no

- H₃C
 - C=C
 - C=CH₃
 - H
 - a) enantiomers
 - b) no

- O
 - C
 - H
 - H₂N
 - CH₃
 - a) same
 - b) yes
E-4 Enantiomers, Diastereomers, Constitutional Isomers, or the Same?

- A: enantiomers
- B: no

E-5 How are these three molecules (A, B, and C) related to each other?

- A and B: same
- A and C: diastereomers
- B and C: diastereomers

Section F: Given the name, draw the structure

a) Draw (2S,3R)-2,3-Difluorohexane using wedge/dash
b) Draw the diastereomers

- 2S, 3R diastereomer
- 2R, 3R diastereomer
- 2S, 3S diastereomer
- 2R, 3S diastereomer (enantiomer)
Section G, H, I: Cycloalkanes

G-1
a) Draw the two *achiral* forms of 1,3,5-Trimethylcyclohexane
b) Which is more stable?

\[\text{achiral #1} \quad \text{most stable chair form} \quad \text{achiral #2} \quad \text{most stable chair form (most stable overall)}\]

H-1

a) Draw the most stable *achiral* isomer of a cyclohexane with a single fluoro and a single bromo substituent on the ring
b) Draw the most stable *chiral* isomer of a cyclohexane with a single fluoro and a single bromo substituent on the ring

\[\text{achiral} \quad \text{most stable chair form} \quad \text{chiral} \quad \text{most stable chair form}\]

I-1
a) Draw one version of 1,3-Dimethylcyclohexane that is chiral, and one that is achiral
b) One of these isomers has two conformers of very different energy. Draw those two chair conformations.

\[\text{chiral} \quad \text{achiral} \quad \text{achiral has conformers of very different energy}\]
J-1 Draw The Enantiomer (+ more)

Escitalopram (Celexa):

- Pure S enantiomer shows a specific rotation of +120°. Sven, a worker in the quality control unit, observed a specific rotation of −30° for a test sample. What is the percentage of (R) and the percentage of (S) in that sample?

62.5 % (R) 37.5 % (S)

K-1 Optical Activity

An 80:20 mixture of the (R,R) and (S,S) enantiomers of 2,3-dibromobutane has an optical rotation of −30°. Using these templates, show the stereochemical representation of these compounds, their stereoisomers, and their optical rotations:

2R, 3R 2S, 3S 2R, 3S

[α]: −50° [α]: +50° [α]: 0°C
L-1 Resolution

Draw the two products of the following reaction, clearly showing stereochemistry (it’s OK to use “R₃N” for (+)-brucine). Note that (+/−) implies a 1:1 mixture of enantiomers.

Racemic mixture of mandelic acid: reaction with (+)-Brucine

![Reaction Diagram]

(+)-mandelic acid (−)-mandelic acid

• How are these products related to each other? **diastereomers**
• How might you exploit this to resolve mandelic acid into its enantiomers? Describe this process briefly

1) add (+)-brucine to racemic mixture. 2) recrystallize, and separate crystals (one diastereomer) from mother liquor, which contains other diastereomer. 3) add acid to crystals, re-forming mandelic acid, then extract in separatory funnel using water and organic solvent to separate optically active mandelic acid from the salts (can do the same for the mother liquor)

M-1 Chiral Nitrogens

Although the nitrogen in the molecule A below has four different substituents, the nitrogen does not give rise to a pair of enantiomers. Why not?

Would you expect the nitrogen in molecule B to be a chiral center? Why or why not?

![Nitrogen Structures]

inverts rapidly, can’t be separated

Stereochemistry Answer Key - Advanced